Boogie Board Sync review

I was looking for a tool to replace all the paper clutter on my desk.

I’ve been looking high and low, and as of December 2018, to my knowledge these are the options if you want to hand-write your notes to an electronic device:

  • a iPad Pro or a Surface tablet, with an Apple Pen or the Surface Pen. They are Not Cheap (around ~1000€). I’ve only tried the Surface, and the input lag is noticeable.
  • a Samsung Android tablet with the S Pen, which, again, is Not Cheap (~700€).
  • another cheaper Android tablet with a regular capacitive pen, but the input lag is huge, and precision is poor.
  • a eInk-based tablet such as the Remarkable, which seems to have very low lag (at least in the ads), but is Not Cheap (~500-600€).
  • a Moleskine Smart Writing System, which uses actual pen and paper, except the paper is proprietary and while Somewhat Cheap (about 1€ for an A4) it is the only system that’ll require money for each page you use (wisely or less wisely).
  • tons of app-based, camera-based systems, some of which include microwave-erasable notebooks, such as the Rocket Book. These are cheaper (20-50€) but I didn’t like the idea of having to take a picture of the notebook, feeling in the end I’d just use it as, you know, a regular notebook.
  • tons of eWriter systems, which are Very Cheap (as low as 5€), with imperceptible input lag, but no “smart” features.

That’s where the Boogie Board Sync stood up. It is the only eWriter system with bluetooth capability and also has an affordable price tag (~60€). Due to the lack of reviews on the web, I’m writing my own.

The selling feature for me was the integration with Evernote. You can actually sketch something on the board, hit the save button, fire up the app on your mobile phone, let it sync, and have your sketch in Evernote moments after. They’ll all collect in a Evernote notebook of your choice for later reference. Unfortunately, Evernote is not able to recognize the hand-written text inside the sketches, but you can write some keywords (such as a timestamp and title) to make it easier to find it later.

The Boogie Board Sync app could definitely use some improvements. At first I tried to set it up on Windows to have it permanently available, but for some reason I couldn’t get the Evernote syncing to work on my laptop (Disclaimer: I tested this on a single Windows laptop). I tried to contact Boogie Board support but they never replied (boo!). This is really unprofessional on their part and brought me to the brink of returning the product, but in the end I figured out I could just install the app on my phone instead. Also, I once had a problem where the app crashed, and upon restarting, it imported again every single sketch from the board, which had to be cleaned out manually.

The build quality for now it is not showing too many issues. The board surface might look scratched from time to time, but it looks to be caused by the pen leaving some kind of small trail; if you clean up the screen with a cloth or a finger, you’ll have a perfectly smooth surface again.

The screen is still perfectly smooth after months of use.

On the other hand, it has shown to be vulnerable to hits. I’ve hit the screen probably by dropping my keychain on it, and now I have a couple of spots on the screen where it is much more sensible (for example, they light up if I softly push there with my finger).

A few hits to the screen led to some sensitive points. 

The pen stroke is somewhat thicker similar to the one of a soft felt tip pen, so you’ll have to adapt to writing with larger letters. Also, the screen sensitivity seems to depend on the heat (such as heat from sunlight) and it will grow bigger if the device gets hotter. Overall the vector version of your sketches is good enough to read later, but it is also not error-proof, as some strokes (sometimes whole letters) will be missing from the end result.

How a note looks on the screen (left), and exported as PDF (right). You can notice some letters are completely missing.

A note on the software: when you delete a sketch, it is actually still accessible by using a USB cable and mounting the board as a USB thumb drive. The sketches are actually stored as vector PDFs on the board. The internal memory is probably enough for ~40k sketches.

Overall I’m rather happy with my Boogie Board Sync. I’ve averaged one note per day since when I had it 3 months ago and now I couldn’t go back. It definitely could use some improvements, but the concept is very interesting and as such I hope some competitors make their move with some new models.

2€ charger for any kind of lithium-ion battery

Lithium-ion batteries are everywhere and they are awesome also for hobbyist projects. I’ve been tempted more than once to use old smartphone batteries in my projects, but recharging them might be a problem.

Well, this time I tried my hand at recharging small coin-cells like the LiR2032. I’ve been looking around for commercial chargers, but they seem to be kind of unpopular. Turns out you can do one yourself with less than 2€.wpid-wp-1448223544369.jpeg

(more…)

Bluetooth low-energy temperature beacon using the nRF24L01: cheap and compatible with existing smartphone apps!

The reason I did this project is because I have a slight overheating issue in a server room; I was wondering if there would be some way to check another room’s temperature from my desk. That’s how I came up with a “wireless thermometer” that can send readings to my Android phone, and my colleagues can use it too!

You might have heard about the nRF24L01: it is a cheap (0.80€) radio frequency module that, back in 2013, Dmitry Grinberg was able to use to “fake” a BTLE beacon. Real Bluetooth 4.0 modules are, nowadays, about 5€ each.

I wondered if I could use it to make a BTLE compatible temperature beacon. Turns out there are 3 major BTLE beacon protocols: iBeacon (by Apple), Eddystone (by Google), and AltBeacon (by Radius Networks). And well, none of them can be emulated with the nRF24L01, since it is only able to send a 16-byte payload (among other limitations), and all three of those protocols require bigger PDUs.

BUT!!! Although I didn’t find a name for it, Nordic Semiconductors Bluetooth ICs (namely the nRF8001 and nRF51822) have their own protocol they use to send telemetry data (which means: temperature, battery level and device ID); turns out this protocol is simple enough to be emulated by the nRF24L01 as well, although with some limitations. They also are so nice to distribute a suite of Android and iOS apps to work with them; the most relevant apps are nRF Master Control Panel (useful for debugging BTLE devices) and nRF Temp 2.0 (a temperature logger; I think it was meant to track device overheating, but hey). You can also download the source code from the app page!

(more…)